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Section A

Question 1 (10%)
Consider a closed system of two particles of masses m1 and m2 located at r1 and r2

respectively. We suppose that the particles are moving (i.e. r1 and r2 depend on time
t).

(a) 2%Write the momentum P of the system in terms of m1, m2, ṙ1, and ṙ2.

(b) 3%Show that P does not depend on time.

(c) 2%Write the angular momentum AM of the system with respect to a fixed point M
located at rM of the system in terms of m1, m2, rM , r1, r2, ṙ1, and ṙ2.

(d) 3%Supposing that the inter-particle interactions are parallel to the straight line going
through the particles, show that A does not depend on time.

Question 2 (15%)
Two particles of masses m1 and m2 = 2m1 collide. Their velocities before the collision
v1 and v2 are orthogonal as shown in figure 1.

Assuming that the system is closed and that the particles collide non-elastically and
coalesce:

(a) 7%find their velocity v after the collision, in terms of v1 and v2.

(b) 8%find cosα in terms of v1, and v2, where α is the angle between v1 and v.
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Figure 1: Collision
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Question 3 (20%)
Two identical particles of mass m are attached to three identical springs (modulus k and
unperturbed length L) as shown of figure 2. The top and bottom springs are attached
to fixed supports. The distance between the fixed supports is denoted by D.

We denote by xi and pi = miẋi the position and momentum of particle i (i = 1, 2),
respectively.

(a) 10%Write down the expression for the total energy H of the system of this system in
terms of xi and pi (i = 1, 2). Note that the potential energy is equal to the sum of
the gravitational potential energy of the two particles and of the potential energy
of the 3 springs.

(b) 10%Write down the 4 Hamiltonian equations of this system.
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Figure 2: 2 particle system
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Section B

Question 1 (20%)
A body of mass m is attached to the top of a vertical spring, the bottom of the spring
is attached to the ground. The spring has modulus k and unperturbed length L. The
position of the body on the x-axis is denoted by x(t).

The body can move between two vertical walls and is subject to a friction force given
by:

Ffr = −αẋex,

where ex is the unit vector of the x-axis.

(a) 5%Find the equilibrium position x0 of the body.

(b) 5%Write down the equation of motion of the body.

(c) 4%Prove that m = α2

4k
corresponds to the case of critical damping.

(d) 6%In the case of critical damping, express the position x as a function of time, sup-
posing that the body starts its motion at t = 0 from the equilibrium position x0

with velocity v0.
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Figure 3: Shock absorber

Question 2 (15%)
Consider the following dynamical system.

{

φ̇ = (φ+ 1)ψ,

ψ̇ = φ(ψ − 1).

(a) 5%Show that the fixed points of this dynamical system are exactly (0, 0) and (−1, 1).

(b) 10%Examine the stability of each fixed point.
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Section C

Question 1 (15%)
A satellite of mass m is rotating about a planet of mass M and radius R with angular
velocity ω. The satellite is at height H. We suppose that the satellite is subject only to
the gravitational attraction of the planet.

(a) 6%Find the acceleration a of the satellite in terms of R, H, ω, and the unit vector er

oriented from the center of the planet to the satellite. (see figure 4)

(b) 9%By applying Newton’s second law and Newton’s law of gravity, express the angular
velocity ω in terms of M , R, H, and the gravitational constant G.

R er

H

ω

M

m

Planet

Satellite

Figure 4: Satellite

Question 2 (20%)
Two spherical bodies of radii R1 and R2 and masses m1 and m2 are attracted to each
other through gravity. The initial velocities of the bodies are zero, the initial distance
separating them is infinitely large. Find their velocities when they collide.

Page 4 of 8



MS 4414 Theoretical Mechanics Spring 2009

Theoretical mechanics : summary

Kinematics

1. Position vector r, velocity v, and acceleration of a particle are related by:

v = ṙ,

a = v̇ = r̈.

2. 1D motion with constant velocity v:

x = vt+ x0

3. 1D motion with a constant acceleration a:

v = at+ v0,

x =
a

2
t2 + v0t+ x0,

where x0 and v0 are the position and velocity at t = 0, respectively.

4. Rotation with constant angular velocity ω (frequency ν = ω
2π

) along a circle of radius
R:

• polar coordinates
{

r = R,

θ = ωt+ θ0,

• Cartesian coordinates:
{

x = R cos(ωt+ θ0),
y = R sin(ωt+ θ0),

• linear velocity:
v = Rω,

• acceleration:
a = Rω2,

where θ0 is the value of θ at t = 0.

5. Rotation with constant angular acceleration α:

ω = αt+ ω0,

θ =
α

2
t2 + ω0t+ θ0,

where ω is the angular velocity, θ is the angular coordinate, ω0 is the angular velocity
at t = 0, and θ0 is the angular coordinate at t = 0.
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Dynamics

1. Newton’s Second Law:
ma = F.

2. For a sliding body, the friction force is Frf = kN , where N is the normal reaction force.
It is oriented in the opposite sense of the motion.

3. Conserved quantities:

• linear momentum
P =

∑

i

mivi,

• angular momentum with respect to the origin

AO =
∑

i

miri × ṙi,

• angular momentum with respect to an arbitrary point P

AP =
∑

i

mi(ri − rP ) × ṙi,

• total energy

E = U(x1, x2, . . .) +
∑

i

miv
2

i

2
,

where U is the potential energy.

4. A conservative force F and the corresponding potential energy U are related by

F = ∇U.

5. The potential energy and force for a spring of modulus k and unperturbed length L

are

U =
k(L′ − L)2

2
,

F = k|L′ − L|,

where L′ is the current length of the spring. The direction of F is such that it tries to
bring the spring back to its unperturbed configuration.

6. The potential energy U and force F for a particle of mass m located at a height H, in
the Earth’s gravitational field are

• locally:
U = −mgH, F = mg,
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• globally

U = −
GMEm

RE +H
, F = −

GMEm

(RE +H)2

OP

OP
.

where G is the gravitational constant, ME is the Earth’s mass, RE is the Earth’s
radius, O is the Earth’s center, and P is the particle position.

G ≈ 6.7 × 10−11m3kg−1s−2, ME ≈ 6.0 × 1024kg, RE ≈ 6.4 × 106m.

7. The angular velocity of a body rotating along a circular orbit around a much heavier
body of mass M is

ω =

√

GM

R3

where R is the orbit radius.

Oscillations

The equation of forced linear pendulum with small amplitude is

φ̈+ 2cφ̇+ ω2φ = F0 cos(Ωt),

where c is the friction coefficient, ω2 = L
g

is the natural frequency of the pendulum, L is the
length of the pendulum, F0 and Ω0 are the amplitude and frequency of the external forcing.

Hamiltonian mechanics

1. The Hamiltonian equations are:
{

ẋj = ∂H
∂pj
,

ṗj = − ∂H
∂xj
,

1 ≤ j ≤ n

2. The Poisson brackets of functions F (x1, . . . xn, p1, . . . , pn) and G(x1, . . . xn, p1, . . . , pn)
are

{F,G} =
n

∑

i=1

(

∂F

∂pj

∂G

∂xj

−
∂F

∂xj

∂G

∂pj

)

.

3. A transformation

x′i = x′i(x1, . . . , xn, p1, . . . , pn), p′i = p′i(x1, . . . , xn, p1, . . . , pn),

is canonical if and only if

{x′i, p
′

k} =

{

−1 if i = k,

0 if i 6= k,

{x′i, x
′

k} = 0,

{p′i, p
′

k} = 0.

4. The Lagrangian equations are

d

dt

(

∂L

∂ẋj

)

−
∂L

∂xj

0, 1 ≤ j ≤ n.
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Stability of dynamical systems

Let xF be a fixed point of a dynamical system ẋ = f(x), where

x =











x1

x2

...
xk











, f =











f1(x1, . . . , xk)
f2(x1, . . . , xk)

...
fk(x1, . . . , xk)











.

Then,

J =











∂f1

∂x1

∂f1

∂x2

· · · ∂f1

∂xk
∂f2

∂x1

∂f2

∂x2

· · · ∂f2

∂xk

...
...

. . .
...

∂fk

∂x1

∂fk

∂x2

· · · ∂fk

∂xk











,

is the Jacobian matrix of the system at xF , with λ1, λ2,..., λk being its eigenvalues.

• If Re(λj) < 0 for all j then xF is asymptotically stable.

• If Re(λj) > 0 for some j then xF is unstable.

• If Re(λj) < 0 for some j, and Re(λj) = 0 for the remaining j, then the test is incon-
clusive.
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