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1 Consarvative Force Fields

A large number of force fieldB(x, y, z) = F(r) can be written as the gradient of
a potential energy(z, y, 2)
F=-V¢

Where the notation above really means

We will show thaty behaves like a potential energy.
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1.1 OneDimension

In one dimensiorF” = —%.

Consider Newton’s second lawWw = ma, in terms of the displacement of the

particlex the equation of motion is:

do

-5 =

As before multiply both sides by the velocity of the particle

d¢ dz

dx dt -

Write each side as a derivative

dp d

Cdt dt

Or, writing & = v
d
0=
dt

Or integrating, constant of integration is the energy ofdygtem

7+

E:%U2+¢

This form of the equation makes it clear thais the potential energy of the sys-

tem.

Example: Gravity Newton’s law of gravitation states that gravitational #rc

on a massn in the gravitational field of a body of magd a distance- away is
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given by

We can interpret this as the derivative of a gravitationaépbal energys.

GMm do
F=—_ -7
r2 dr
le.
GMm d_¢
r2  dr
Use an indefinite integral
¢ = + 0o

whereg, is a constant of integration which has no effect on the foetefilt is
traditional to take the zero of gravitational potential |yeas when the bodies are

infinitely separated: i.epy = 0.

Exam Question Two spherical objects, of radi, » and masses:, », are at-
tracted to each other through gravity. The initial velastof the objects are zero,
the initial distance separating them is infinitely largendrtheir velocities when

they collide.

1.2 ThreeDimension

We can use exactly the same arguments for a particle in timesndions.

d’r
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As before multiply bev = % and write as a total time derivative

2
LR .
Integration .
a7
Rearrange and integrate
E = %vg +¢

Exam Question Consider the two-dimensional system of two particles of msiss
my andms, with coordinate§x1,y;) and (xs,y-) interacting through gravity.

Write down the expression for the kinetic and potential eiesrgf the system.

Velocity of particle 1:v, = ( )

Velocity of particle 1:v, = ( )

Distance between particleg:=

Kinetic energy: KE= o+

Potential energy: PE

ISince¢ is a function ofx, y andz: § = 92 % + 92 % + 92 % We can write this more

compactly using the notation of vector calculusiés= v - V.
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2 Work

According to vector calculus

¢a—¢b_/bav¢-dr—/ba—F-dr.

A useful way to calculate the potential energy of the systeto integrate from a

point at which the potential energy is zero (or known).

Work is done when energy is converted from one form to another, wlgen

potential energy is converted to kinetic energy or vice aers

Consider the change in the kinetic energy

[2)
AKE — / dKE 4

1

By conservation of energy

2’z dx

Replacena by F

[2)
AKE = / F d_x dt
T

1

And convert to an integral over

Z2
AKE:/ F-dr

1

If the integral on the RHS is positive then potential enerdyamg converted into
kinetic energy. If the integral is negative then kinetic igyas being converted to

potential energy.

2.1 Frictional Forces

In a system with frictional forces work done against fric@bforces gives the loss

of energy from the system.
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AE:/ Ffr-dI‘

1

AE will be negative because frictional forcEg always act in th

11%

direction to motion d.

3 Elastic Collisions

Previously we considered inelastic collisions in which ilesdremain amalga-
mated. It is easy to see that in this case energy is not catserBefore the

collision
Ei=—uv+ —v
LD TR B
After the collision

- miv1 + Moy

my + Mo
B — my + my [ M1V + Mas 2
= 2 mi + mo
m2 1Mo m2
Ery = 1 v? V1V + ——2——V3
f 2(m1+m2)1 m1+m212 2(m1+m2)2

Change in kinetic energy

obviously negative.
In an elastic collision, both momentum and energy are comseln general:

Conservation of momentum

M1V + MaVo; = miviy +
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Conservation of energy

my o

— Vvt

2

ma o

2

ma o

Vai = + Vo

2

In principle these equations can be solvedvfgr andv,;.

Example Consider two particles with equal masses, Initially particle 1

moves with velocityy, and particle2 is at rest. They collide elastically: what

are their final velocities; andwv,?

Conservation of momentum:

muvy = + = Ug = +
Conservation of energy:
m oo 2 _

Easiest to solve these equations graphically. The corts@mvaf momentum

equation describes

a

and the conservation of energy equation describes

a . Remember, despite the way the graph is drawn, the system is

one dimensional and, andv, are parallel.

V2]

U1

www.ul.ie/wlee/ms4414.html

William Lee



MS4414, Theoretical Mechanics 8

In the final state, all of the velocity of the moving particleshbeen transferred to

the stationary particlen; = 0, vy = vy.

This is something you sometimes see in snooker or pool wheseball strikes

another head on.

Example How would my graphical solution look if the collision was lastic
and the particles coalesced?

3.1 Newton'’sCradle

In Newton’s cradle collisions are elastic. The motion of Hadls in the cradle
can be understood be breaking the motion down as indiviciigions, in which

momentum is exchanged between the balls until it reachebatat the end of

00000

the row.

OO00 O
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