Partial Differentiation, Exercises

Sofiane Soussi and William Lee william.lee@ul.ie http://www.ul.ie/wlee/ma4005.html

September 11, 2012

Question 1 Find the first partial derivatives of :

(i) $f_1(x, y) = x^2 + y^3$ (ii) $f_2(x, y) = x^3 y^5$ (iii) $f_3(x, y) = (2xy^2 - 4y)e^x$ (iv) $f_4(x, y) = \sin(2x + 5y)$ (v) $f_5(x, y) = 5xy^3 \cos(x + y)$ (vi) $f_6(x, y) = \frac{x}{y^2} - \frac{y}{x^2}$ (vii) $f_7(x, y) = \ln(x^2 + y)$ (viii) $f_8(x, y, z) = xy + yz + xz$ (ix) $f_9(x, y, z, w) = \frac{w^2}{xy^2 z^3}$

Question 2 Find the second partial derivatives of the previous functions.

Question 3 A cylindrical hole of diameter 6 inches and height 4 inches is to be cut in a block of wood by a process in which the maximum error in diameter is 0.05 inch and in height is 0.01 inch. What is the largest possible error in the volume of the cavity?

Question 4 The breaking weight W of a cantilever beam is given by the formula

$$Wl = Kbd^2$$
,

where b is the breadth, l the length, d the depth, and K a constant depending on the material of the beam.

If the length is increased by 1% and the breadth by 5%, by how much should the depth be altered to keep the breaking weight unchanged?

Question 5 A triangle ABC is being transformed so that the angle A changes at a uniform rate from 0° to 90° in 10 seconds while side AB increases by 1 cm s^{-1} and side AC decreases by 1 cm s^{-1} . If at the time of observation, $A = 60^{\circ}$, AC = 16 cm, and AB = 10 cm, find

- (i) how fast is *BC* changing?
- (ii) how fast is the area of the triangle changing?

Question 6 The radius of a cylinder increases at the rate of 2 cm s^{-1} and the height h increases at 3 cm s^{-1} . Find the rate at which the volume is increasing when r = 10 cm and h = 20 cm.

Question 7 (a) Find all partial derivatives of order 2 of the following functions: $f(x,y) = ye^{3xy}\cos(xy)$; $g(x,y) = \frac{2x-3y}{x^2-2y}$. (b) In an ideal gas, the pressure P, the volume V, the temperature T, and the amount of gas n (in moles) satisfy the following formula: PV = nRT where R is the ideal gas constant. We consider a fixed quantity of gas n_0 , enclosed in a box of volume V_0 , maintained at a temperature T_0 . Starting from that initial state, we deform slightly the box so that it's volume reduces by δV , which is supposed to be small (the new volume of the gas is $V_0 - \delta V$, and at the same time we heat the box so that the temperature of the box is raised by δT (the new temperature is $T_0 + \delta T$). (i) Write the total differential of P in terms of n, Tand V. (ii) Supposing that all parameters have changed very slightly , find an approximation of the pressure P of the gas in the new state in terms of $R, n_0, P_0, V_0, T_0, \delta V$ and δT . Exam 2008-9