FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA 4005	SEMESTER: Autumn 2013
MODULE TITLE: Engineering Maths T1	DURATION OF EXAMINATION: 2hrs 30mins
LECTURER: Dr. William Lee	PERCENTAGE OF TOTAL MARKS: 80%

INSTRUCTIONS TO CANDIDATES: Answer any 5 questions. All questions carry equal marks. Full marks for correct answers to any 5 questions. Open book exam.

Engineering Maths T1

- 1. Find all first order and second order partial derivatives of the following functions:
 - (a) $f_1(x,y) = x^2 + y^4 + x^3 y^2$
 - (b) $f_2(x,y) = x \sin(x^2 + y^2)$
 - (c) $f_3(x, y, z) = \exp(x + y)\cos(y + z)$

2. The Tsiolkovsky rocket equation is

$$v = v_{\rm e} \ln \left(\frac{m_{\rm i}}{m_{\rm f}}\right)$$

where v is the final velocity of a rocket initially at rest, after its mass has decreased from $m_{\rm i}$ to $m_{\rm f}$ due to the ejection of propellant at exhaust velocity $v_{\rm e}$. These quantities take the values $v_{\rm e} = 100 \pm 10 \,\rm km \, s^{-1}$, $m_{\rm i} = 9000 \pm 100 \,\rm kg$ and $m_{\rm f} = 1000 \pm 50 \,\rm kg$.

- (a) Write the total differential of v in terms of $v_{\rm e}$, $m_{\rm i}$, $m_{\rm f}$.
- (b) Write an expression for the maximum error in v in terms of $v_{\rm e}$, $m_{\rm i}$, $m_{\rm f}$ and their uncertainties, $\delta v_{\rm e}$, $\delta m_{\rm i}$, $\delta m_{\rm f}$ (assuming those uncertainties to be small).
- (c) Calculate the numerical value of the maximum error in v using the values given above.

3. Calculate the following integrals.

- (a) $\int (x^5 + 2\cos(2x) + e^{-3x}) dx$
- (b) $\int x^2 \exp(x^3) dx$
- (c) $\int x \cos(2x) dx$
- (d) $\int \frac{x}{x^2+6x+5} \, \mathrm{d}x$

4.

- (a) Find the area under the curve $y = x^3$ and above the x-axis between x = 0 and x = 2.
- (b) Find the area between the curves $y = x^3$ and $y = x^2$ between x = 0 and x = 2.

Page 1 of 2

(c) Find the volume generated when the previously defined area—between the curves $y = x^3$ and $y = x^2$ between x = 0 and x = 2—is rotated about the x axis.

20%
5%
5%
10%

20%

5%	
5%	

10%		
	10%	

|--|

6%

6%

8%

- 5. Find the general solution of the differential equations
 - (a) y' + 2y = 0
 - (b) $y' x^3 y = 0$
 - (c) y'' + 5y' + 4y = 5x

6.

- (a) Use integration by parts to show that the Laplace transforms of y' and y'' are sY(s) y(0) and $s^2Y(s) sy(0) y'(0)$ respectively, where Y is the Laplace transform of y.
- (b) Use the Laplace transform to find the solution of the differential equation

Page 2 of 2

y'' - 5y' + 6y = 3, y(0) = 1, y'(0) = -1.

20%	
5%	
5%	
10%	

20%

10%

10%