FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA 4005 SEMESTER: Autumn 2012

MODULE TITLE: Engineering Maths T1 DURATION OF EXAMINATION: 2hrs 30mins

LECTURER: Dr. William Lee PERCENTAGE OF TOTAL MARKS: 80%

INSTRUCTIONS TO CANDIDATES:

Answer any 5 questions. All questions carry equal marks. Full marks for correct answers to any 5 questions. Open book exam.

- 1. Find all first order and second order partial derivatives of the following functions:
- 20%

(a) $f_1(x,y) = x^3 + y^2 + xy^4$

5%

(b) $f_2(x,y) = x \exp(x + x^2 + y^2)$

5%

(c) $f_3(x, y, z) = \ln(x + y)\sin(y + z)$

10%

2. The Tsiolkovsky rocket equation is

$$v = v_{\rm e} \ln \left(\frac{m_{\rm i}}{m_{\rm f}} \right)$$

Here v is the final velocity of a rocket initially at rest, after its mass has decreased from $m_{\rm i}$ to $m_{\rm f}$ due to the ejection of propellant at exhaust velocity $v_{\rm e}$. These quantities take the values $v_{\rm e} = 50 \pm 5 \, {\rm km \, s^{-1}}, \, m_{\rm i} = 9000 \pm 100 \, {\rm kg}$ and $m_{\rm f} = 1000 \pm 50 \, {\rm kg}$.

(a) Write down the total differential of v in terms of v_e , m_i , m_f .

5%

(b) Write down an expression for the maximum error in v in terms of v_e , m_i , m_f and their uncertainties, δv_e , δm_i , δm_f (assuming those uncertainties to be small).

5%

(c) Calculate the numerical value of the maximum error in v using the values given above.

10%

3. Calculate the following integrals.

20%

(a) $\int (2x^4 + \cos x + e^{3x}) dx$

5% 5%

(b) $\int x \cos(x^2) dx$

5%

(c) $\int x \sin(2x) dx$

5%

(d) $\int \frac{2x+1}{x^2-3x+2} \, dx$

20%

4.

- 6%
- (a) Find the area under the curve $y = x + x^2$ and the x-axis between x = 0 and x = 1.

(b) Find the y coordinate of the centroid of the previously defined area.

6%

(c) Find the volume generated when the previously defined area is rotated about the x-axis.

8%

5. Find the general solution of the differential equations

20%

(a) y' - 3y = 0

5%

(b) $y' + x^3y = 0$

|5%

(c) y'' + 5y' + 6y = 5

10%

6.

20%

(a) Use integration by parts to show that the Laplace transforms of y' and y'' are sY(s) - y(0) and $s^2Y(s) - sy(0) - y'(0)$ respectively, where Y is the Laplace transform of y.

10%

(b) Use the Laplace transform to find the solution of the differential equation

10%

$$y'' - 5y' + 6y = 2$$
, $y(0) = 2$, $y'(0) = -1$.