

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA 4005SEMESTER: Autumn 2009MODULE TITLE: Engineering Maths T1DURATION OF EXAMINATION: 2hrs 30minsLECTURER: Dr. S. SoussiPERCENTAGE OF TOTAL MARKS: 80%

INSTRUCTIONS TO CANDIDATES: Answer any 5 questions. All questions carry equal marks. Full marks for correct answers to any 5 questions. Open book exam.

- 1. Find all partial derivatives of order 2 of the following functions:
 - (a) $f_1(x, y) = \sin(xy)$
 - (b) $f_2(x,y) = xy^2 3x^2y$
 - (c) $f_3(x,y) = (x+2y)^2$

(d)
$$f_4(x,y) = e^{xy}\cos(xy)$$

2. In an ideal gas, the pressure P, the volume V, the temperature T, and the amount of gas n (in moles) satisfy the following formula:

$$PV = nRT,$$

where R is a constant called the gas constant.

We consider a fixed quantity of gas n_0 enclosed in a box of volume V_0 maintained at a temperature T_0 . Starting from that initial state, we deform slightly the box so that its volume is reduces by δV which is supposed to be small (the new volume is $V_0 - \delta V$), and at the same time, we heat the box so that the temperature of the gas is raised by δT (the new temperature is $T_0 + \delta T$).

- (a) Write the total differential of P in terms of n, T, V.
- (b) Supposing that all parameters have changed very slightly, find an approximation of the pressure P of the gas in the new state in terms of R, n_0 , P_0 , V_0 , T_0 , δV and δT .
- 3. (a) Find the area under the curve $y = e^{2x}$ and the x-axis between x = 0 and x = 1.
 - (b) Find the centroid of the previously defined area.
 - (c) Find the volume generated when the previously defined area is rotated about the \boldsymbol{x} axis.
- 4. Evaluate the definite integrals

(a)
$$\int_{0}^{1} (x-1)^{10} dx$$

(b) $\int_{1}^{5} \frac{2x+1}{x^{2}+x} dx$
(c) $\int_{2}^{3} \frac{dx}{x^{2}+2x+2}$
(d) $\int_{0}^{\pi} e^{x} \sin(x) dx$
5%

5. Find the general solution of the differential equations

(a)
$$y' - 2y = 0$$

Page 1 of 2

20%
5%
5%
5%
5%
20%

6%
6%
8%

20%

20%

10%

(b)
$$y' - 2y = \sin(x)$$

6.

- (a) Calculate the Laplace transform of $f(t) = te^{-3t}$.
- (b) Use log tables to find the Laplace transform of the functions i. $f(t) = \cosh(t) - \sinh(t)$ ii. $f(t) = U_{\pi}(t) \cos(t - \pi)$
- (c) Use the Laplace transform to find the solution of the boundary value problem
 - y'' 2y' + y = 2, y(0) = 1, y'(0) = -1.

10%

20%